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Dendritic growth during liquid to solid phase transitions

V. Laxmanan
Metallurgy Department, General Motors Research and Development Center, Mail Code 480-106-212, Warren, Michigan 48090

~Received 11 September 1997!

Some of the current controversial interpretations of dendritic growth data, including the recent space shuttle
experimental data, have been reviewed here. Theoretical estimates of the tip temperatures of high purity
succinonitrile dendrites, based on the space shuttle growth data, suggest a heretofore unsuspected influence of
dendritic sidebranching effects on the tip itself. This has been neglected in all of the current theoretical
analyses of dendritic growth. A simple method of investigating dendritic sidebranching effects is also described
here.@S1063-651X~98!10102-2#

PACS number~s!: 68.70.1w, 47.54.1r, 81.10.Fq, 81.10.Mx
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I. INTRODUCTION AND BACKGROUND

In many natural and commercially important solidificatio
processes, the solid phase that grows into the liquid deve
a very complex, highly branched, treelike morpholog
called a dendrite@1–8#. This structure often has a parabolo
dal tip, which advances at a fixed rateR into the liquid.
Ivantsov’s famous solution to the heat diffusion limite
growth of a branchless paraboloid of revolution@1#, and/or
various modifications of this solution, have therefore be
used, quite extensively, over the last 50 years, as a us
starting point to interpret the growth kinetics of the dendri
structure@2–16#. All of these models essentially assume th
the diffusion fields surrounding the tips of the rather co
plex, irregularly shaped, dendritic structures can be cha
terized by the Ivantsov diffusion fields.

The validity of this rather widely held viewpoint has bee
questioned in two recent papers by Laxmanan@17,18#. Also,
it should be noted that the space shuttle experiments
Glicksman and co-workers@19#, and the earth-based exper
ments of Bisang and Bilgram@20#, have now clearly estab
lished that the dendrite tip region is far from being a perf
paraboloid of revolution. Indeed, in directional solidificatio
experiments, the dendrite tip shape deviates from the pe
paraboloidal shape, within a very short distance behind
tip, as shown by Esaka@6#. Furthermore, other recent exper
ments@21# indicate that the concentration field surroundi
the dendrite tip does not resemble the diffusion field arou
an isolated Ivantsovian paraboloid. Hence, a more gen
approach to the dendrite problem is needed, as also em
sized in Ref.@17#.

Unfortunately, rather than challenge the basic premise
dendrite[paraboloid, the popular view is that any deviatio
from the theoretical predictions, based on Ivantsov’s so
tion, or simple modifications of this solution, signify th
dominance of gravitational convective effects@2–4#. This
view continues to be held even after the space shuttle exp
ments with succinonitrile. Indeed, efforts are now under w
to reexamine the effect of the ‘‘residual’’ natural convecti
in the space environment@22#, and also include other van
ishingly small effects such as flows due to liquid-so
shrinkage@23# and ‘‘wall’’ effects @24,25#. These analyses
are again aimed at modifying the Ivantsov solution, and
continue to neglect the importance of dendritic sidebranch
571063-651X/98/57~2!/2004~6!/$15.00
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effects. The heat and matter liberated by the dendritic s
branches must surely diffuse through the liquid, and aff
the tip regions of the dendrite.

This tip diffusion problem is admittedly very difficult to
solve, rigorously, and has naturally been overlooked in fa
of other, more mathematically tractable, analyses of the d
dritic growth data. The potential importance of includin
sidebranching effects in the theoretical analysis@2,26–30#, in
a systematic manner, was also recognized by Glicksman
co-workers, and Langer and Mu¨ller-Krumbhaar ~LM-K !.
Nevertheless, the theoretical focus during most of the 19
and the 1990s has been on developing a detailed unders
ing of the influence of anisotropies in the surface energy
interfacial kinetic attachment effects, with attempts bei
made to calculate the interface shape as a part of the solu
These led to the development of the microscopic solvabi
theories@4,7,8,30,31#, and the phase-field models@32,33#.
However, as noted by Glicksman and Marsh~see @4#, pp.
1107 and 1111!, these theoretical approaches have not b
very successful in explaining the large body of dendri
growth data that has been accumulated over the last
decades.

II. THE TIP TEMPERATURE
OF A FREELY GROWING DENDRITE

New insights into any problem, such as the dendrite pr
lem on hand, can only be obtained by analyzing the exp
mental data thoroughly, and consideringall of the implica-
tions of the theory, especially when critical, and carefu
planned, experiments appear to disagree with a w
established theoretical model; see, for example, the dis
sion by Hoffmann@34#. Hence, as a first step, we will reana
lyze the space shuttle dendritic growth data of Glicksm
and co-workers, within the context of the Ivantsov parab
loidal approximation for a dendrite. The calculations pr
sented here illustrate the fundamental importance of incl
ing dendritic sidebranching effects, in a systematic mann
in the theoretical analysis.

Elementary physical considerations suggest that the d
drite tip temperature (Tt) must always be less than the equ
librium melting point~MP! of the liquid in which it is grow-
ing. However, it is not immediately obvious whatTt should
be. This depends on both the growth rate (R) and the tip
2004 © 1998 The American Physical Society



m
te

n
he
o

-

nt

ro

in
n,
en

f
n
ur
b

c
e

a

o
ip
’
nt
at

th
te

ch
ai
a
s

th

e

er
-
tu

t
to

-
e

.
y

hs
’
v

ure
at
ri-

trol
de-
e

re
ri-

the

a

ty

th-
nd

ly

ex-
e

ri-
lt in
the

ak-
m

57 2005DENDRITIC GROWTH DURING LIQUID TO SOLID . . .
radius (r t), and is given by Eq.~1! or ~3! below. Other
physical considerations, embodied in Eq.~2!, also enter into
the calculation of the tip temperature. Unfortunately, this i
portant dendritic state variable has, thus far, been comple
overlooked@2,3,26,27,35#.
For example, the early efforts of Glicksman, Schaefer, a
Ayers @2,26# were focused on an understanding of t
growth-rate–supercooling behavior. However, a replotting
their 1976 raw data on aR-r t diagram reveals the now well
known LM-K finding of Rrt

2>const @27,28#. The complete
R-r t plot, for a fixed supercooling, see Refs.@27,35#, also
provides some new insights into the (R,r t) selection mecha-
nism in a given experiment. On such a plot, the experime
point lies in the region where theR-r t curves predicted by
most theories, based on the branchless paraboloidal app
mation, begin to merge~see Fig. 1 of LM-K or the various
plots provided by Doherty, Cantor, and Fairs, Ref.@35#!.
Hence, it is generally believed that dendritic sidebranch
effects can be neglected, at least as a first approximatio
favor of a more rigorous attempt at estimating the dim
sionless parameter s* . This parameter ~i.e., s*
52aLd0 /Rrt

2! was identified in the stability analysis o
LM-K. The above also provides some insights into the fu
damental motivation for including the anisotropies in the s
face energy and interfacial attachment kinetics. As noted
Glicksman and Marsh~@4#, p. 1102!, the modern attempts to
determines* , rigorously, represent the single largest colle
tive theoretical effort expended to date to understand d
dritic crystallization.~Here d0 is the capillary length scale
andaL is the thermal diffusivity of the liquid.!
However, while addressing the tip selection problem, it w
not recognized, until very recently@17#, that each one of the
fictitious dendrites, among the infinite manifold of (R,r t)
values predicted by heat flow theories@26,30,36–39#, will
have a different tip temperature. The~hypothetical! maxi-
mum velocity ~MV ! dendrite, with a sharp tip radius, als
has a very low tip temperature, or equivalently a high ‘‘t
undercooling.’’ This MV dendrite, or ‘‘highly undercooled’
dendrite, is not observed experimentally. The experime
dendrite has a large tip radius, and a much lower growth r
and so also has a much lower tip undercooling@3#. The ‘‘tip
undercooling’’ is the depression inTt below the equilibrium
MP of the material.
With the availability of the space shuttle dendritic grow
data, it is now possible to obtain some very reliable estima
of Tt . It would appear that purely diffusive conditions, su
as visualized in deriving Ivantsov’s solution, should prev
in these truly remarkable experiments. Thus one can estim
Tt ~see Fig. 3!, without invoking any ad hoc assumption
regarding the growth mechanism, directly from Eq.~1!.

Tt5T}1~Lv /Cpl!I ~pt!. ~1!

HereT} is the far-field temperature of the supercooled ba
pt5Rrt/2aL is the thermal Pe´clet number, and the function
f t5pt exp(pt)E1(pt) is now called the Ivantsov function.Lv ,
Cpl , andaL are, respectively, the latent heat of fusion, sp
cific heat, and thermal diffusivity of the liquid.E1(pt) is the
exponential integral function. The tip temperature det
mined from Eq.~1!, which is obtained from heat flow con
siderations, must also be consistent with the tip tempera
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obtained by invoking ‘‘local’’ thermodynamic equilibrium a
the tip, and then allowing for the kinetic effect. This leads
the tip temperature given by Eq.~2!.

Tt5TM1mLCt22GTM /r t2R/m. ~2!

HereTM is the equilibrium melting point of the pure mate
rial, mL is the slope of the equilibrium liquidus line on th
phase diagram~considering a binary alloy, for simplicity!,
andCt is the liquid composition in equilibrium with the tip
G5g/Lv is the capillary length,g being the surface energ
of the solid-liquid interface, andm is the interfacial kinetic
attachment coefficient. The intersection point of the grap
of Eqs. ~1! and ~2! gives the desired solution to the ‘‘free’
dendritic growth problem in a pure or alloy melt. Ivantso
circumvents any discussion of the unknown tip temperat
by assumingTt5TM . In other words, Ivantsov assumes th
growth occurs in a supercooled pure melt, with zero impu
ties (Ct→C0→0), with a zero surface energy effect~G
→0 or r t@G!, and with infinitely rapid interfacial mobilities
(m→}).

In the space shuttle experiments, as well as in the con
experiments on the ground, Glicksman and co-workers
terminedR, r t ~from direct photographic observations of th
growth process!, and T} , very accurately. These data a
now available on the Isothermal Dendrite Growth Expe
ment ~IDGE! Home Page@40#, along with estimates of the
measurement errors. There is no uncertainty regarding
material properties, at least for high purity succinonitrile@2–
4,26#. Also, the equilibrium MP has been determined with
great deal of precision@41,42#. Hence, if the Ivantsov diffu-
sion model truly describes the dendritic structure, Eq.~1!
should yield ‘‘reasonable’’ values forTt , as in a directional
solidification experiment@6–8,43#. Specifically, one would
expect theTt values to beless thanthe equilibrium MP, and
to decrease with increasingR, or supercoolings. The now
widely accepted value for the equilibrium MP of high puri
succinonitrile is 331.24 K@3,5,6,41,42,44#.

III. THE TIP TEMPERATURE FOR DENDRITES
GROWING IN MICROGRAVITY

Figures 1 and 2 illustrate theTt2r t behavior for two mi-
crogravity (m-g) experiments, and the corresponding ear
based (1-g) experiment. These represent the highest a
lowest supercoolings, for which bothR andr t data are avail-
able, with the supercooling being nearly the same in 1-g and
m-g. In Fig. 1 we consider an experiment with a relative
large supercooling, 0.783 K, and the 1-g experiment with a
supercooling of 0.775 K. In Fig. 2, we consider a space
periment with a relatively low supercooling, 0.103 K. Th
supercooling in the corresponding 1-g experiment was 0.102
K. The growth rateR was assumed to be equal to the expe
mental value in preparing these plots. The heat flow resu
Eq. ~1! indicates that the tip temperature will increase as
tip radius increases, for a fixed value ofR. Hence, for a very
large tip radius, the tip temperature can, theoretically spe
ing, exceed the equilibrium MP. The theoretical maximu
tip temperature will be equal toT}1(Lv /Cpl), correspond-
ing to the limit of r t→} for which f t→1.

However, physical considerations dictate thatTt be less
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2006 57V. LAXMANAN
than TM , or in the limit be exactly equal toTM . This
Ivantsov limit is indicated by pointsA andC, which denote
the intersection point of Eqs.~1! and~2! for the 1-g andm-g
experiments. The horizontal line is the equilibrium MP
high purity succinonitrile, i.e., the graph of Eq.~2! in the
Ivantsov limit. For the 1-g experiment, the tip radius~point
A! is significantly less than the experimental tip radius.
exact match with bothR and r t is obtained at pointB, but
the tip temperature atB is greater than the equilibrium MP
For the space experiment, the tip radius at pointD ~Fig. 1! is
quite close to the experimental value, with the tip tempe
ture being slightly less than the equilibrium melting poin
However, for the space experiment at the lower supercoo
~Fig. 2!, the tip temperatures predicted at pointD, where the
tip radius is equal to the experimental value, is higher th
the equilibrium melting point.
Figure 3 summarizes theTt values estimated in this fashio
for the space dendrites, in the regime of low supercoolin
where other discrepancies between theory and experim
have already been noted by Glicksmanet al. [36,37]. Also
indicated here is the MP determined during the USMP
flight. This higher MP is not consistent with the lower puri
levels~99.999%! reported by LaCombeet al. @19#, compared
to the purity levels~99.99995%! reported earlier by Huang
and Glicksman@3#. The reason for the higher MP is no
clear, and will be overlooked, for the moment.
A more detailed discussion of the tip temperature behavio
the space, and the corresponding terrestrial, experiments
be found in Refs.@45–47#. Various modifications of the
Ivantsov solution, and their effect on the tip temperatur
have also been considered here.
While the anticipated trends inTt are observed in Fig. 3~in
spite of the large scatter, the tip temperature seems to
crease with increasing supercooling, orR!, the absolute
value of Tt exceeds the equilibrium MP at low supercoo
ings. It is tempting to follow conventional arguments, a
attribute this discrepancy to ‘‘residual’’ gravity effects~even
at ;1026ge!, or other secondary phenomena such as
wall proximity effect, liquid-solid density change, or the d

FIG. 1. Analysis of the tip temperature behavior for one of t
microgravity experiments with high purity succinonitrile, and t
corresponding ground-based experiment. The intersection of
heat flow curves with the horizontal line, representing the equi
rium MP, represents the maximum value of the tip radius, in
Ivantsov limit of zero impurities and infinitely rapid interfacial mo
bilities. The significance of pointsA, B, C, andD is discussed in
the text.
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tails of the surface energy and interfacial kinetic attachm
effect @22–25,30–32,36,37#. Instead, it is suggested that w
carefully explore other tacit assumptions that have b
made in deriving Ivantsov’s result in Eq.~1!.
The assumption that needs to be reexamined, immediate
the assumption that the diffusion field surrounding the tip
a real dendrite is identical to the diffusion field surroundi
an isolated, branchless, paraboloid. Ivantsov himself spe
lates about this in a 1956 paper@1#, and suggests a verifica
tion of his solution by determining the surface temperature
a paraboloidal shaped crystal. Almost 40 years after this s
gestion was made, and even after the elegant space sh
experiments, no serious attempts have yet been made to
termine the tip temperature, or the surface temperature,
freely growing dendrite.Of course, within a short distanc
behind the tip, dendritic sidebranching changes the diffus
field from that calculated by Ivantsov. This has been co
firmed by Emsellem and Tabeling@21#. Using a direct and
noninvasive technique, they have shown that the isoconc
trates surrounding the tip of an ammonium bromide dendr
growing in a viscous gel~thus minimizing

he
-
e

FIG. 2. ~a! Analysis of the tip temperature behavior for a m
crogravity experiment, with a supercooling of 0.103 K, and a 1g
experiment with a supercooling of 0.102 K. The growth rate
assumed to be equal to the experimental value in preparing t
plots. R51.16mm/sec for the space experiment andR
53.41mm/sec for the 1-g experiment. The significance of point
A, B, C, andD has been discussed in the text.~b! An expanded tip
temperature scale for the experiments in~a!. The effect of a finite
surface energy and a finite impurity,C050.001%, is considered
here. This produces a slightly sharper tip~points E and F, versus
pointsA andC!. The experimental tip radius in both 1-g andm-g
falls in the flat region of the tip undercooling curve, after accou
ing for the surface energy and the impurity effect, and has a ‘‘m
mum’’ undercooling.
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57 2007DENDRITIC GROWTH DURING LIQUID TO SOLID . . .
convection!, are not perfectly confocal paraboloids. The is
concentrates are distorted because of the mass flux gene
by the sidebranches. Likewise, Ananth and Gill@22#, based
on their analysis of the space shuttle dendritic growth d
have also concluded that the sidebranch structure must a
the heat transfer from the tip itself. The dendrite shape d
ates from the paraboloidal shape within a short distance
hind the tips, and theoretical relations, derived on the b
of the paraboloidal approximation for the dendrite sha
must clearly be at the root of the currently observed discr
ancies between theory and experiment.
However, rather surprisingly, in all of the references cit
here, no attempts have been made to include the tip temp
ture in the analysis. Even Pines, Chait, and Zlatkowski@48#,
who present a very general scaling analysis, based on
Buckingham Pi theorem~from the science of fluid mechan
ics!, overlookTt . This should be included as an importa
state variable in such an analysis.

IV. THE HEAT FLUX GENERATED
BY THE DENDRITIC SIDEBRANCHES

Discrepancies in the estimatedTt values, similar to that
revealed in Fig. 3, are also observed with the earth-ba
growth data of Huang and Glicksman~all 16 experimental
points yield a tip temperature that is too high!, the IDGE
ground-based data~at all supercoolings!, and the growth data
in other materials such as xenon, pivalic acid, and bin
succinonitrile-acetone solutions. In each case, theTt values
calculated on the basis of Eq.~1! exceed the equilibrium MP
especially at low supercoolings. The Tt estimates for xenon
are almost 30 K to 50 K higher than the equilibrium M
based on the current best estimates of the thermophy
properties of this substance.

From Figs. 1 and 2, it is clear that the space shuttle d
dritic growth data can be rationalized on the basis of
‘‘minimum undercooling’’ principle @17,18#, i.e., the den-

FIG. 3. The tip temperature behavior for the microgravity e
periments~USMP-2, STS 62!, based on the Ivantsov heat flow s
lution. The estimated tip temperatures exceed the currently acce
equilibrium MP of high purity succinonitrile, 331.24 K, in a larg
majority of these experiments. This discrepancy can be resolve
the equilibrium MP has the higher value of 331.255 K, as de
mined in the second flight~USMP-3!. However, this higher MP
would also imply a higher tip undercooling in the space experime
and is also inconsistent with the lower purity level reported
LaCombeet al. for the material used in the space experiments.
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drite tip temperature rises to its maximum permissible val
consistent with the requirements of heat~and mass! diffu-
sion, surface energy, and interfacial kinetic attachment
fects. Note that when impurity effects are included, as in F
2~b! the graph of Eq.~2! reveals a mathematical maximum
point. The intersection of Eq.~1! with the graph of Eq.~2!,
around this maximum point, represents a ‘‘minimum und
cooled’’ state. Even the high purity succinonitrile of Glick
man et al. can be treated as an extremely dilute alloy,
discussed in Refs.@49, 50#. The material used in the spac
shuttle experiment had an impurity content ofC050.001%,
see LaCombeet al. @19#, whereas the ultrahigh purity mate
rial used in the Huang and Glicksman experiments had
impurity content ofC05531025 mole %.

Thus it appears that the dendrite problem can be solv
as discussed in Ref.@17#, by circumventing the difficult task
of finding solutions to the complicated partial differenti
equations that describe the transport processes around
paraboloidal shaped tip. It is also clear that a unique
radius is obtained, even in the limit of zero surface tens
and infinitely rapid interfacial attachment kinetics~pointsA
and C of Fig. 1!, if one properly accounts for the tip tem
perature of the ‘‘freely’’ growing dendrite or paraboloid. I
this sense, the current analysis is in agreement with the
cent analyses by Spencer and Huppert@51,52# which also
reveal a unique tip radius in the zero surface tension lim
Spencer and Huppert have, however, considered the gro
an array, rather than an isolated dendrite. The ‘‘effective’’
undercooling for an individual dendrite tip in the array
lower than that for the isolated Ivantsov paraboloid. Hen
the predicted tip temperatures would be higher than that
the isolated dendrite. In the limit as the spacings in the ar
become very large, the Spencer-Huppert analysis yields
results obtained for the Ivantsov paraboloid. Hence it
likely that the Spencer-Huppert analysis, if tested critica
with the space shuttle growth data, would also reveal
difficulties noted in Figs. 1–3 here.

The simple model proposed almost a decade ago by L
manan@17,39#, which includes a side-branching~adjustable!
parameterl t , can be shown to yield a satisfactory predictio
of R, r t , andTt , in both the 1-g and the space experimen
@48#. Sidebranching effects can also be treated, within
context of the paraboloidal approximation, by consideri
growth of the paraboloid within a second confocal parab
loid, as was done by Pines, Chait, and Zlatkowski a
Sekerka, Coriell, and McFadden@24,25#. This second pa-
raboloid may also be interpreted as an ‘‘envelope’’ whi
contains many dendritic side-branches. The heat flux ge
ated by the sidebranches is contained within this ‘‘en
lope,’’ and raises the temperature in the immediate vicin
of the tips. This is exactly the scenario visualized by LM-
to explain the systematic deviations between their pred
tions, based on the marginal stability hypothesis, and
classical 1976 dendritic growth data of Glicksman, Schae
and Ayers@2#. The interactions, or ‘‘merging,’’ of the long-
range diffusion field from the sidebranches, suggest the
tion of an ‘‘effective tip radius’’ that should enter into th
energy balance calculations. Alternatively, one may assu
that the heat flux generated by the sidebranches affects
thermal gradient at the tip and hence the tip temperature
the heat flux (q) dissipated from the tip, as follows

-

ted

if
r-

t,
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2008 57V. LAXMANAN
Tt5T}1~Lv /Cpl!~12x t!f t ~3!

and

GL~ tip!52~Tt2T}!/~12x t!f t, ~4!

where

x t5E1~ptaB
2 !/E1~pt!, ~5!

giving

l t5~12x t!f t/2pt ~6!

and

q52kLGL~ tip!5kL~Tt2T}!/~12x t!f t ~7!

Nu5hrt /kL51/l t . ~8!

Equations~3!–~5! can be deduced from the results given
Cantor and Vogel@53#, Pines, Chait, and Zlatkowski@24#,
and Sekerka, Coriell, and McFadden@25#. Nu is the ‘‘local’’
value of the heat transfer Nusselt number at the tip@22#. The
adjustable parameters of Pines, Chait, and ZlatkowskiaB

2

5V) and Sekerka, Coriell, and McFadden,d5(r t/2)(aB
2

21) are clearly related tox t , and hence the sidebranchin
parameterl t . The thermal boundary layerd t as defined by
Laxmanan is the same asd8 of Eckert and Drake@54#. Thus
d t,d. Also, unlike d, the diffusion length scaled t , or d8,
can be determined unambiguously, by solving the relev
transport equations and determining the gradient at the in
face. Hence we can generalize the result in Eqs.~7! and ~8!
to the more complex dendritic case, by simply treatingl t as
an adjustable parameter, rather than using the values
tained by solving the relevant differential equations arou
some simple geometric shape, such as a paraboloid~or a
sphere, ellipsoid, hyperboloid, sinusoid, Saffman-Taylor v
cous finger, etc.!.

The heat flux generated by sidebranching could also
modeled within the context of the phase-field theories
reinterpreting the significance of the ‘‘diffuse interface’’
such models. This ‘‘diffuse,’’ or ‘‘mushy region’’~see
Wheeler in@33#, p. 698!, is analogous to the boundary lay
in the analyses of Cantor and Vogel, Pines, Chait, and Z
kowski and Sekerka, Coriell and McFadden. Within th
‘‘mushy’’ interface the enthalpy~or the free energy! can be
varied continuously from the value for a pure liquid to th
for a liquid plus solid mixture~i.e., sidebranches!, and finally
to the full solid. A unique solution that is also consistent w
global conservation laws should thus be obtained. Invok
the global energy constraint~and, likewise, the mass ba
.

all
nt
r-

b-
d

-

e
y

t-

t

g

ance!, should remove the only remaining uncertainty in t
problem, with regard to the exact value ofl t .

In this context, a review of the discussions by Hoffma
@34#, Aharoni @55#, Jefferys and Berger@56#, and Horgan
@57# is also highly recommended. Each one of these auth
has shed some light on the larger issues surrounding
subject at hand. How do we analyze this difficult problem
the simplest possible terms? What is the underlying mec
nism governing the growth of this complex structure? A
there new fundamental secrets that the ubiquitous dendrit
snowflake is trying to reveal to us, from up above the sky
high, in the microgravity environment aboard the spa
shuttle? It appears that beneath all of this complexity a
lies a new, and thus far unrecognized, natural constant of
dendritic growth process, the chemical version of the si
branching parameter, denoted by the symboll @18,58,59#.
To rephrase a quip from the final paragraph of Horga
essay, with the recognition of the fundamental importance
the tip temperature, and sidebranching effects, the dend
problem may be moving ‘‘from perplexity to simplicity.’’
Only time will tell, if there are any heads nodding today
this suggestion.

V. SUMMARY AND CONCLUSIONS

~1! The heat~and mass! flux generated by the dendriti
sidebranches has been neglected in all of the current the
for dendritic growth, starting with the well-known Ivantso
solution for an isolated paraboloid of revolution. Th
Ivantsov model thus leads to a fundamentally erroneous
timate for the dendrite tip temperature. The dendritic grow
data from the space shuttle experiments indicate that, at
supercoolings, the theoretically estimated tip temperatu
are greater than the equilibrium MP of high purity succin
nitrile.

~2! The simple model proposed earlier by Laxmanan
shown here to account for the heat flux generated by
dendritic sidebranches. This model is also compared to
stagnant boundary layer model of Cantor and Vogel, Pin
Chait, and Zlatkowski, and Sekerka, Coriell, and McFadd
as well as the phase-field models that have generated a l
interest in recent years. Such a comparison also sugge
simple method of investigating sidebranching effects
greater detail within the context of the phase-field model

~3! Global conservation laws must be incorporated in
the phase-field, or boundary layer models, to obtain an ac
rate prediction of the growth kinetics. It is suggested th
introducing this global constraint will also eliminate the ne
for any ad hoc assumptions in the theory, i.e., adjustab
parameters such as those invoked by Laxmanan, Pi
Chait, and Zlatkowski, and Sekerka, Coriell, and McFadd
A
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