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Dendritic growth during liquid to solid phase transitions
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Some of the current controversial interpretations of dendritic growth data, including the recent space shuttle
experimental data, have been reviewed here. Theoretical estimates of the tip temperatures of high purity
succinonitrile dendrites, based on the space shuttle growth data, suggest a heretofore unsuspected influence of
dendritic sidebranching effects on the tip itself. This has been neglected in all of the current theoretical
analyses of dendritic growth. A simple method of investigating dendritic sidebranching effects is also described
here.[S1063-651X98)10102-3

PACS numbd(s): 68.70+w, 47.54:+r, 81.10.Fq, 81.10.Mx

I. INTRODUCTION AND BACKGROUND effects. The heat and matter liberated by the dendritic side-
branches must surely diffuse through the liquid, and affect
In many natural and commercially important solidification the tip regions of the dendrite.
processes, the solid phase that grows into the liquid develops This tip diffusion problem is admittedly very difficult to
a very complex, highly branched, treelike morphology,Solve, rigorously, and has naturally been overlooked in favor
called a dendrit§1—8]. This structure often has a paraboloi- Of other, more mathematically tractable, analyses of the den-
dal tip, which advances at a fixed raRe into the liquid.  dritic growth data. The potential importance of including
lvantsov’s famous solution to the heat diffusion limited Sidebranching effects in the theoretical analy&i26-30, in
growth of a branchless paraboloid of revolutifi, and/or @ systematic manner, was also recognized by Glicksman and
various modifications of this solution, have therefore beerfo-workers, and Langer and Mer-Krumbhaar (LM-K).
used, quite extensively, over the last 50 years, as a useffjevertheless, the theoretical focus during most of the 1980s
starting point to interpret the growth kinetics of the dendriticand the 1990s has been on developing a detailed understand-
structure[2—16]. All of these models essentially assume thating of the influence of anisotropies in the surface energy and
the diffusion fields surrounding the tips of the rather com-interfacial kinetic attachment effects, with attempts being
plex, irregularly shaped, dendritic structures can be charadhade to calculate the interface shape as a part of the solution.
terized by the Ivantsov diffusion fields. These led to the development of the microscopic solvability
The validity of this rather widely held viewpoint has been theories[4,7,8,30,3], and the phase-field mode[82,33.
questioned in two recent papers by Laxmafiti 18. Also,  However, as noted by Glicksman and Marsee[4], pp.
it should be noted that the space shuttle experiments o107 and 111} these theoretical approaches have not been
Glicksman and co-workefd 9], and the earth-based experi- Very successful in explaining the large body of dendritic
ments of Bisang and Bilgrarf20], have now clearly estab- growth data that has been accumulated over the last two
lished that the dendrite tip region is far from being a perfectdecades.
paraboloid of revolution. Indeed, in directional solidification
experimgnts, the dend_rite_ tip shape deviat_es from the_perfect Il. THE TIP TEMPERATURE
p_arabolmdal shape, within a very short distance behind _the OF A FREELY GROWING DENDRITE
tip, as shown by Esal®]. Furthermore, other recent experi-
ments[21] indicate that the concentration field surrounding New insights into any problem, such as the dendrite prob-
the dendrite tip does not resemble the diffusion field aroundem on hand, can only be obtained by analyzing the experi-
an isolated lvantsovian paraboloid. Hence, a more generahental data thoroughly, and considerialy of the implica-
approach to the dendrite problem is needed, as also emphtiens of the theory, especially when critical, and carefully
sized in Ref[17]. planned, experiments appear to disagree with a well-
Unfortunately, rather than challenge the basic premise oéstablished theoretical model; see, for example, the discus-
dendrite=paraboloid, the popular view is that any deviationssion by Hoffmanr{34]. Hence, as a first step, we will reana-
from the theoretical predictions, based on Ivantsov's solulyze the space shuttle dendritic growth data of Glicksman
tion, or simple modifications of this solution, signify the and co-workers, within the context of the lvantsov parabo-
dominance of gravitational convective effed®-4]. This loidal approximation for a dendrite. The calculations pre-
view continues to be held even after the space shuttle expersented here illustrate the fundamental importance of includ-
ments with succinonitrile. Indeed, efforts are now under waying dendritic sidebranching effects, in a systematic manner,
to reexamine the effect of the “residual” natural convectionin the theoretical analysis.
in the space environmef22], and also include other van- Elementary physical considerations suggest that the den-
ishingly small effects such as flows due to liquid-solid drite tip temperatureT;) must always be less than the equi-
shrinkage[23] and “wall” effects [24,25. These analyses librium melting point(MP) of the liquid in which it is grow-
are again aimed at modifying the Ivantsov solution, and sang. However, it is not immediately obvious wh&t should
continue to neglect the importance of dendritic sidebranchindpe. This depends on both the growth raf) (and the tip
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radius (), and is given by Eq(1l) or (3) below. Other obtained by invoking “local” thermodynamic equilibrium at
physical considerations, embodied in EB), also enter into the tip, and then allowing for the kinetic effect. This leads to
the calculation of the tip temperature. Unfortunately, this im-the tip temperature given by E¢R).

portant dendritic state variable has, thus far, been completely

overlooked[2,3,26,27,3% T=Ty+mC,—2I'Ty/ri—R/u. 2

For example, the early efforts of Glicksman, Schaefer, and

Ayers [2,26] were focused on an understanding of theHereT,, is the equilibrium melting point of the pure mate-
growth-rate—supercooling behavior. However, a replotting ofial, m_ is the slope of the equilibrium liquidus line on the
their 1976 raw data on R-r, diagram reveals the now well- phase diagraniconsidering a binary alloy, for simplicity
known LM-K finding of erzconst[27,28. The complete andC; is the liquid composition in equilibrium with the tip.
R-r, plot, for a fixed supercooling, see Ref7,35, also I'=1/L, is the capillary length;y being the surface energy
provides some new insights into thB,f;) selection mecha- of the solid-liquid interface, ang is the interfacial kinetic
nism in a given experiment. On such a plot, the experimentahttachment coefficient. The intersection point of the graphs
point lies in the region where thR-r, curves predicted by of Egs.(1) and(2) gives the desired solution to the “free”
most theories, based on the branchless paraboloidal approxiendritic growth problem in a pure or alloy melt. Ivantsov
mation, begin to mergésee Fig. 1 of LM-K or the various circumvents any discussion of the unknown tip temperature
plots provided by Doherty, Cantor, and Fairs, RES5]). by assumindgl,=T), . In other words, Ivantsov assumes that
Hence, it is generally believed that dendritic sidebranchinggrowth occurs in a supercooled pure melt, with zero impuri-
effects can be neglected, at least as a first approximation, ities (C;—Cy—0), with a zero surface energy effed
favor of a more rigorous attempt at estimating the dimen—0 orr>1"), and with infinitely rapid interfacial mobilities
sionless parametero*. This parameter (i.e., o* (u— ).

=2a,dy/Rr?) was identified in the stability analysis of In the space shuttle experiments, as well as in the control
LM-K. The above also provides some insights into the fun-experiments on the ground, Glicksman and co-workers de-
damental motivation for including the anisotropies in the surterminedR, r, (from direct photographic observations of the
face energy and interfacial attachment kinetics. As noted bgrowth process and T.., very accurately. These data are
Glicksman and Marsk{4], p. 1102, the modern attempts to now available on the Isothermal Dendrite Growth Experi-
determineo™, rigorously, represent the single largest collec-ment (IDGE) Home Pagd40], along with estimates of the
tive theoretical effort expended to date to understand denmeasurement errors. There is no uncertainty regarding the
dritic crystallization.(Here d, is the capillary length scale material properties, at least for high purity succinonitf2e-

and « is the thermal diffusivity of the liquid. 4,26]. Also, the equilibrium MP has been determined with a
However, while addressing the tip selection problem, it wagreat deal of precisiof41,42. Hence, if the Ivantsov diffu-
not recognized, until very recentfyt7], that each one of the sion model truly describes the dendritic structure, EQ.
fictitious dendrites, among the infinite manifold oR(;)  should yield “reasonable” values fdF;, as in a directional
values predicted by heat flow theorig26,30,36—39% will solidification experimen{6-8,43. Specifically, one would
have a different tip temperature. Tiypothetical maxi-  expect theT, values to bdess tharthe equilibrium MP, and
mum velocity (MV) dendrite, with a sharp tip radius, also to decrease with increasing, or supercoolings. The now
has a very low tip temperature, or equivalently a high “tip widely accepted value for the equilibrium MP of high purity
undercooling.” This MV dendrite, or “highly undercooled” succinonitrile is 331.24 K3,5,6,41,42,44

dendrite, is not observed experimentally. The experimental

dendrite has a large tip radius, and a much lower growth rate, ;| THE TIP TEMPERATURE FOR DENDRITES

and so also has a much lower tip undercooli@fy The “tip GROWING IN MICROGRAVITY

undercooling” is the depression iRk below the equilibrium

MP of the material. Figures 1 and 2 illustrate thg,—r, behavior for two mi-

With the availability of the space shuttle dendritic growth crogravity (u-g) experiments, and the corresponding earth-
data, it is now possible to obtain some very reliable estimatebased (1g) experiment. These represent the highest and
of T,. It would appear that purely diffusive conditions, such lowest supercoolings, for which bothandr, data are avail-

as visualized in deriving Ivantsov’s solution, should prevailable, with the supercooling being nearly the same i drd

in these truly remarkable experiments. Thus one can estimae-g. In Fig. 1 we consider an experiment with a relatively

T, (see Fig. 3, without invoking any ad hoc assumptions large supercooling, 0.783 K, and theglexperiment with a

regarding the growth mechanism, directly from Eg). supercooling of 0.775 K. In Fig. 2, we consider a space ex-
periment with a relatively low supercooling, 0.103 K. The
Ti=T.+ (L, /Co)(py)- (1) supercooling in the correspondingdlexperiment was 0.102

K. The growth rateR was assumed to be equal to the experi-

HereT.,. is the far-field temperature of the supercooled bathmental value in preparing these plots. The heat flow result in
pi=Rr/2a, is the thermal Pelet number, and the function Eg. (1) indicates that the tip temperature will increase as the

= Pt expE)Ey(py) is now called the Ivantsov functioh,, , tip radius increases, for a fixed valueRf Hence, for a very
Cpi, andey are, respectively, the latent heat of fusion, spe-large tip radius, the tip temperature can, theoretically speak-
cific heat, and thermal diffusivity of the liquid,(p;) is the  ing, exceed the equilibrium MP. The theoretical maximum
exponential integral function. The tip temperature detertip temperature will be equal to..+(L,/Cp), correspond-
mined from Eq.(1), which is obtained from heat flow con- ing to the limit ofr— < for which ¢;— 1.
siderations, must also be consistent with the tip temperature However, physical considerations dictate tfiatbe less
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FIG. 1. Analysis of the tip temperature behavior for one of the  egtimated paraboloidal

microgravity experiments with high purity succinonitrile, and the tiptemperature [K] ooy ot

flow curves
corresponding ground-based experiment. The intersection of the 331,250 —~ . (expt) ™~ ", (expt)
heat flow curves with the horizontal line, representing the equilib-  331.245 1-9 g T, =331.24K
rium MP, represents the maximum value of the tip radius, in the 331240 c
Ivantsov limit of zero impurities and infinitely rapid interfacial mo- =0 e R S S
bilities. The significance of pointa, B, C, andD is discussed in 331.235 y M0 E \r'(MU) c. =\0'001 %
the text. 331.230 1-g wg  y>0
than Ty, or in the limit be exactly equal td,,. This 331225
Ivantsov limit is indicated by pointd andC, which denote 331.220 A—
the intersection point of Eq$l) and(2) for the 1-g andu-g 0 20 40 80 80 100 120 140 160 180 200

experiments. The horizontal line is the equilibrium MP of ® Tip radius [um]

high pu”‘)/ §uccmon|trlle, €., t_he graph O_f qu)_ In t_he FIG. 2. (8 Analysis of the tip temperature behavior for a mi-
Ivantsov limit. For the 1g experiment, the tip radiugoint  rogravity experiment, with a supercooling of 0.103 K, and g 1-
A) is significantly less than the experimental tip radius. Angxperiment with a supercooling of 0.102 K. The growth rate is
exact match with bottR andr, is obtained at poinB, but  assumed to be equal to the experimental value in preparing these
the tip temperature @ is greater than the equilibrium MP. plots. R=1.16um/sec for the space experiment ani
For the space experiment, the tip radius at pBi(Fig. 1) is  =3.41um/sec for the 1g experiment. The significance of points
quite close to the experimental value, with the tip temperaA, B, C, andD has been discussed in the tetk. An expanded tip
ture being slightly less than the equilibrium melting point. temperature scale for the experimentgah The effect of a finite
However, for the space experiment at the lower supercoolingurface energy and a finite impuritg,=0.001%, is considered
(Fig. 2), the tip temperatures predicted at pdht where the  here. This produces a slightly sharper ¢intsE andF, versus
tip radius is equal to the experimental value, is higher thaPointsA andC). The experimental tip radius in bothd.and u-g

the equilibrium melting point. falls in the flat region of the tip undercogling curve, after account-
Figure 3 summarizes thg, values estimated in this fashion 19 for the surface energy and the impurity effect, and has a “mini-
for the space dendrites, in the regime of low supercoolingsmum’” undercooling.

where other discrepancies between theory and experimegdjs of the surface energy and interfacial kinetic attachment
have already been noted by Glicksmetnal. [36,37]. Also  effect [22-25,30—-32,36,37 Instead, it is suggested that we
indicated here is the MP determined during the USMP-Zarefully explore other tacit assumptions that have been
flight. This higher MP is not consistent with the lower purity made in deriving Ilvantsov’s result in E¢L).

levels(99.999% reported by LaCombet al.[19], compared  The assumption that needs to be reexamined, immediately, is
to the purity levels(99.99995% reported earlier by Huang the assumption that the diffusion field surrounding the tip of
and Glicksman[3]. The reason for the higher MP is not a real dendrite is identical to the diffusion field surrounding
clear, and will be overlooked, for the moment. an isolated, branchless, paraboloid. Ivantsov himself specu-
A more detailed discussion of the tip temperature behavior imates about this in a 1956 papér], and suggests a verifica-
the space, and the corresponding terrestrial, experiments mayn of his solution by determining the surface temperature of
be found in Refs[45-47. Various modifications of the a paraboloidal shaped crystal. Almost 40 years after this sug-
Ivantsov solution, and their effect on the tip temperaturesgestion was made, and even after the elegant space shuttle
have also been considered here. experiments, no serious attempts have yet been made to de-
While the anticipated trends ifi; are observed in Fig. 8n  termine the tip temperature, or the surface temperature, of a
spite of the large scatter, the tip temperature seems to déreely growing dendriteOf course, within a short distance
crease with increasing supercooling, B), the absolute behind the tip, dendritic sidebranching changes the diffusion
value of T; exceeds the equilibrium MP at low supercool- field from that calculated by Ivantsov. This has been con-
ings. It is tempting to follow conventional arguments, andfirmed by Emsellem and Tabelin@1]. Using a direct and
attribute this discrepancy to “residual” gravity effedsven  noninvasive technique, they have shown that the isoconcen-
at ~10 ®g,), or other secondary phenomena such as thérates surrounding the tip of an ammonium bromide dendrite,
wall proximity effect, liquid-solid density change, or the de- growing in a viscous gefthus minimizing
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Estimated paraboloidal drite tip temperature rises to its maximum permissible value,
tip temperature, T, [K] . . . .
consistent with the requirements of hdahd mask diffu-
331.270 4 . sion, surface energy, and interfacial kinetic attachment ef-
231.260 1 . . fects. Note that when impurity effects are included, as in Fig.
——e '""r':= ..... P R -—eem 2(b) the graph of Eq(2) reveals a mathematical maximum
0L /255K peg . point. Thg inter;ection of. Ed1) with the graph pf Eq(2),
+31.240 . around this maximum point, represents a “minimum u_nder-
’ Ty =331.24 K « cooled” state. Even the high purity succinonitrile of Glicks-
331.230 "N man et al. can be treated as an extremely dilute alloy, as
. : discussed in Refd49, 50. The material used in the space
331.220

shuttle experiment had an impurity content@f=0.001%,
. ) see LaCombet al. [19], whereas the ultrahigh purity mate-
Experimental supercooling [ K rial used in the Huang and Glicksman experiments had an

FIG. 3. The tip temperature behavior for the microgravity ex- impurity _Comem 0fCo=5x10"° m_oIe %.
periments(USMP-2, STS 62 based on the Ivantsov heat flow so-  1hus it appears that the dendrite problem can be solved,
lution. The estimated tip temperatures exceed the currently accepté$ discussed in Reff17], by circumventing the difficult task
equilibrium MP of high purity succinonitrile, 331.24 K, in a large Of finding solutions to the complicated partial differential
majority of these experiments. This discrepancy can be resolved gduations that describe the transport processes around the
the equilibrium MP has the higher value of 331.255 K, as deter{araboloidal shaped tip. It is also clear that a unique tip
mined in the second flightUSMP-3. However, this higher MP  radius is obtained, even in the limit of zero surface tension
would also imply a higher tip undercooling in the space experimentand infinitely rapid interfacial attachment kinetigsoints A
and is also inconsistent with the lower purity level reported byand C of Fig. 1), if one properly accounts for the tip tem-
LaCombeet al. for the material used in the space experiments.  perature of the “freely” growing dendrite or paraboloid. In
this sense, the current analysis is in agreement with the re-
convection, are not perfectly confocal paraboloids. The iso-cent analyses by Spencer and Hupgdéit,52 which also
concentrates are distorted because of the mass flux generatedeal a unique tip radius in the zero surface tension limit.
by the sidebranches. Likewise, Ananth and G22], based Spencer and Huppert have, however, considered the growth
on their analysis of the space shuttle dendritic growth dataan array, rather than an isolated dendrite. The “effective” tip
have also concluded that the sidebranch structure must affeahdercooling for an individual dendrite tip in the array is
the heat transfer from the tip itself. The dendrite shape devilower than that for the isolated Ivantsov paraboloid. Hence
ates from the paraboloidal shape within a short distance behe predicted tip temperatures would be higher than that for
hind the tips, and theoretical relations, derived on the basithe isolated dendrite. In the limit as the spacings in the array
of the paraboloidal approximation for the dendrite shapebecome very large, the Spencer-Huppert analysis yields the
must clearly be at the root of the currently observed discrepresults obtained for the Ivantsov paraboloid. Hence it is
ancies between theory and experiment. likely that the Spencer-Huppert analysis, if tested critically
However, rather surprisingly, in all of the references citedwith the space shuttle growth data, would also reveal the
here, no attempts have been made to include the tip temperdificulties noted in Figs. 1-3 here.
ture in the analysis. Even Pines, Chait, and ZlatkoW4Bi, The simple model proposed almost a decade ago by Lax-
who present a very general scaling analysis, based on thmanan[17,39, which includes a side-branchirigdjustable
Buckingham Pi theorenffrom the science of fluid mechan- parametei,, can be shown to yield a satisfactory prediction
ics), overlook T;. This should be included as an important of R, r, andT,, in both the 1g and the space experiments

0.000 0.050 0.100 0.150 0.200 0.250 0.300

state variable in such an analysis. [48]. Sidebranching effects can also be treated, within the
context of the paraboloidal approximation, by considering

IV. THE HEAT FLUX GENERATED growth of the paraboloid within a second confocal parabo-

BY THE DENDRITIC SIDEBRANCHES loid, as was done by Pines, Chait, and Zlatkowski and

Sekerka, Coriell, and McFaddd4,25. This second pa-

Discrepancies in the estimatdd values, similar to that raboloid may also be interpreted as an “envelope” which
revealed in Fig. 3, are also observed with the earth-basecbntains many dendritic side-branches. The heat flux gener-
growth data of Huang and Glicksmdall 16 experimental ated by the sidebranches is contained within this “enve-
points yield a tip temperature that is too highhe IDGE lope,” and raises the temperature in the immediate vicinity
ground-based dafatall supercoolings and the growth data of the tips. This is exactly the scenario visualized by LM-K
in other materials such as xenon, pivalic acid, and binaryo explain the systematic deviations between their predic-
succinonitrile-acetone solutions. In each case,thealues tions, based on the marginal stability hypothesis, and the
calculated on the basis of E({.) exceed the equilibrium MP, classical 1976 dendritic growth data of Glicksman, Schaefer,
especially at low supercooling3he T, estimates for xenon and Ayers[2]. The interactions, or “merging,” of the long-
are almost 30 K to 50 K higher than the equilibrium MP, range diffusion field from the sidebranches, suggest the no-
based on the current best estimates of the thermophysictibn of an “effective tip radius” that should enter into the
properties of this substance. energy balance calculations. Alternatively, one may assume

From Figs. 1 and 2, it is clear that the space shuttle denthat the heat flux generated by the sidebranches affects the
dritic growth data can be rationalized on the basis of theghermal gradient at the tip and hence the tip temperature and
“minimum undercooling” principle[17,18, i.e., the den- the heat flux ) dissipated from the tip, as follows:
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Ti=Tu+ (L, /Cp) (1~ xt) Pt (3)  ance, should remove the only remaining uncertainty in the
problem, with regard to the exact value xf.
and In this context, a review of the discussions by Hoffmann
[34], Aharoni [55], Jefferys and Bergel56], and Horgan
Giitip= —(Ti=T)/(1—x) b1 (4 [57]is also highly recommended. Each one of these authors

has shed some light on the larger issues surrounding the
subject at hand. How do we analyze this difficult problem in
_ 2 the simplest possible terms? What is the underlying mecha-
Xi=Ea(praa)/Ea(py), ©) nism governing the growth of this complex structure? Are
giving there new fundamental secrets that the ubiquitous dendrite or
snowflake is trying to reveal to us, from up above the sky so
A= (1= x1) D/ 2p; (6)  high, in the microgravity environment aboard the space
shuttle? It appears that beneath all of this complexity also
and lies a new, and thus far unrecognized, natural constant of the
_ _ dendritic growth process, the chemical version of the side-
4= =K Griip =KL(Te= To) /(1= x0) @ branching parameter, denoted by the symbdl18,58,59.
Nu=hr,/k =1/, . ®) To rephr_ase a quip fr_qm the final paragraph_ of Horgan’s
essay, with the recognition of the fundamental importance of
Equations(3)—(5) can be deduced from the results given bythe tip temperature, and sidebranching effects, the dendrite
Cantor and Voge[53], Pines, Chait, and ZlatkowskR4], ~ Problem may be moving “from perplexity to simplicity.”
and Sekerka, Coriell, and McFaddg2s]. Nu is the “local” Only time will tell, if there are any heads nodding today at
value of the heat transfer Nusselt number at th¢2gj. The  this suggestion.
adjustable parameters of Pines, Chait, and ZIatkow&I@i (
=()) and Sekerka, Coriell, and McFadde&;(rt/Z)(aé
—1) are clearly related tg,, and hence the sidebranching (1) The heat(and maskflux generated by the dendritic
parametenn,. The thermal boundary laye?; as defined by sidebranches has been neglected in all of the current theories
Laxmanan is the same @& of Eckert and Drak¢54]. Thus  for dendritic growth, starting with the well-known Ivantsov
6;<< 6. Also, unlike §, the diffusion length scalé,, or &', solution for an isolated paraboloid of revolution. The
can be determined unambiguously, by solving the relevanivantsov model thus leads to a fundamentally erroneous es-
transport equations and determining the gradient at the intetimate for the dendrite tip temperature. The dendritic growth
face. Hence we can generalize the result in Egsand (8) data from the space shuttle experiments indicate that, at low
to the more complex dendritic case, by simply treatingas  supercoolings, the theoretically estimated tip temperatures
an adjustable parameter, rather than using the values olbre greater than the equilibrium MP of high purity succino-
tained by solving the relevant differential equations arounchitrile.

where

V. SUMMARY AND CONCLUSIONS

some simple geometric shape, such as a parabdtmich (2) The simple model proposed earlier by Laxmanan is
sphere, ellipsoid, hyperboloid, sinusoid, Saffman-Taylor vissshown here to account for the heat flux generated by the
cous finger, etg. dendritic sidebranches. This model is also compared to the

The heat flux generated by sidebranching could also bstagnant boundary layer model of Cantor and Vogel, Pines,
modeled within the context of the phase-field theories byChait, and Zlatkowski, and Sekerka, Coriell, and McFadden,
reinterpreting the significance of the “diffuse interface” in as well as the phase-field models that have generated a lot of
such models. This “diffuse,” or “mushy region”(see interest in recent years. Such a comparison also suggests a
Wheeler in[33], p. 699, is analogous to the boundary layer simple method of investigating sidebranching effects in
in the analyses of Cantor and Vogel, Pines, Chait, and Zlatgreater detail within the context of the phase-field models.
kowski and Sekerka, Coriell and McFadden. Within this (3) Global conservation laws must be incorporated into
“mushy” interface the enthalpyor the free energycan be the phase-field, or boundary layer models, to obtain an accu-
varied continuously from the value for a pure liquid to thatrate prediction of the growth kinetics. It is suggested that
for a liquid plus solid mixturdi.e., sidebranchgsand finally  introducing this global constraint will also eliminate the need
to the full solid. A unique solution that is also consistent withfor any ad hoc assumptions in the theory, i.e., adjustable
global conservation laws should thus be obtained. Invokingparameters such as those invoked by Laxmanan, Pines,
the global energy constrair{ind, likewise, the mass bal- Chait, and Zlatkowski, and Sekerka, Coriell, and McFadden.
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